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SQL-9
2 UNION JOIN, NATURAL JOIN, DIFFERENCE, INTERSECTION

CASE, CAST

ALTER , DROP

CHECK constraints

information_schema is a metadata layer

Transaction Isolation Levels, Dynamic SQL, Temporary Tables

DATE, TIME, TIMESTAMP, INTERVAL, BIT, VARCHAR, NCHAR

Database cursors
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SQL-9
9
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Recursive Queries

Database triggers

Common Table Expressions (CTE)

Arrays

BOOLEAN data type

ROLLUP, CUBE, GROUPING SETS

CREATE ROLE

UNNEST
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SQL:2
00

3
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XML-related features (SQL/XML)

Window functions

MERGE

Sequence generator

auto-generated columns

CREATE TABLE AS …

CREATE TABLE LIKE …

BIT and BIT VARYING data types

OLAP extended with window functions
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SQL:2
00

6
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XQuery

XML manipulation in database

XML-related features (SQL/XML)
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SQL:2
00

8
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MERGE and DIAGNOSTIC statements

TRUNCATE TABLE

partitioned JOIN tables

WHEN clauses in a CASE expression

INSTEAD OF database triggers

enhanced XQuery

enhancements to derived column names

FETCH clause
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SQL:2
01

1
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PERIOD FOR

enhancements for window functions and 

FETCH clause

chronological databases (~ temporal databases)
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SQL:2
01

6
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JSON support

regular expressions

Polymorphic table functions

Date and time formatting and parsing

LISTAGG

Data type DECFLOAT
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01
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Multi-Dimensional Arrays
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SQL:2
02

0+
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SQL / GraphQL
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INSERT INTO Student

  (StudentID, FirstName, SecondName,

   LastName, Address, Phone) 

VALUES (1, ‘Peter’, ‘Petrov’, ‘Petrovich’,

                ‘Kazan’, ‘5-44-9247’);
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INSERT INTO Student

  (StudentID, FirstName, SecondName,

   LastName, Address, Phone) 

VALUES (DEFAULT, ‘Peter’, ‘Petrov’, 
‘Petrovich’, ‘Kazan’, ‘5-44-9247’);
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INSERT INTO Student 

DEFAULT VALUES;
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INSERT INTO Student

  (StudentID, FirstName, SecondName,

   LastName, Address, Phone) 

VALUES (1, ‘Peter’, ‘Petrov’, ‘Petrovich’,

                ‘Kazan’, ‘5-44-9247’),

               (2, ‘Ivan’, ‘Ivanov’, ‘Ivanovich’,

                ‘Moscow’, ‘3-14-7381’) ;
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CREATE TABLE s_kazan 

AS

SELECT *

   FROM Student

WHERE Address = ‘Kazan’;



INSERT INTO s_kazan

SELECT *

   FROM Student

WHERE Address = ‘Kazan’;
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INSERT INTO Student

  (StudentID, FirstName, SecondName,

   LastName, Address, Phone) 

VALUES (1, ‘Peter’, ‘Petrov’, ‘Petrovich’,

                ‘Kazan’, ‘5-44-9247’);
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INSERT ALL 

   INTO Student

      (StudentID, FirstName, SecondName,

       LastName, Address, Phone) 

   VALUES (1, ‘Peter’, ‘Petrov’, ‘Petrovich’,

                  ‘Kazan’, ‘5-44-9247’)

   INTO Student

      (StudentID, FirstName, SecondName,

       LastName, Address, Phone) 

   VALUES(2, ‘Ivan’, ‘Ivanov’, ‘Ivanovich’,

                ‘Moscow’, ‘3-14-7381’) 

   INTO Fun (FanId, Name)

   VALUES(1, ‘Party’) 

SELECT * FROM DUAL;
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CREATE TABLE s_kazan 

AS

SELECT *

   FROM Student

WHERE Address = ‘Kazan’;
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INSERT INTO s_kazan

SELECT *

   FROM Student

WHERE Address = ‘Kazan’;



INSERT INTO Student

  (StudentID, FirstName, SecondName,

   LastName, Address, Phone) 

VALUES (1, ‘Peter’, ‘Petrov’, ‘Petrovich’,

                ‘Kazan’, ‘5-44-9247’);

Azat Yakupov



Azat Yakupov

CREATE TABLE s_kazan 

AS

SELECT *

   FROM Student

WHERE Address = ‘Kazan’;
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INSERT INTO s_kazan

SELECT *

   FROM Student

WHERE Address = ‘Kazan’;



INSERT INTO Student

  (StudentID, FirstName, SecondName,

   LastName, Address, Phone) 

VALUES (1, ‘Peter’, ‘Petrov’, ‘Petrovich’,

                ‘Kazan’, ‘5-44-9247’),

               (2, ‘Ivan’, ‘Ivanov’, ‘Ivanovich’,

                ‘Moscow’, ‘3-14-7381’) ;
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UPDATE Student 

   SET Address = ‘Kazan’,

           Phone = DEFAULT 

WHERE StudentId = 1;
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WITH cte_upd AS

  (UPDATE Student 

          SET Address = ‘Kazan’

    WHERE StudentID > 1000

    RETURNING *)

INSERT INTO Student_log

   SELECT *, current_timestamp 

      FROM cte_upd;
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UPDATE Student 

   SET Address = ‘Kazan’

WHERE StudentId = 1;
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UPDATE Student 

   SET Address = ‘Kazan’

WHERE StudentId = 1;
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UPDATE Student 

   SET StudentId = StudentId + 1 

ORDER BY StudentId DESC;
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UPDATE Student, Addresses 

   SET Student.Address = 

          Addresses.Address

WHERE Student.ID = 

              Addresses.Student_ID
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UPDATE Student 

   SET Phone = CONCAT(‘555’, Phone)

LIMIT 100;
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DELETE FROM Student;
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DELETE FROM Student 

WHERE StudentId = 1;



Azat Yakupov

DELETE FROM Student 

WHERE StudentId IN (1,2,3);
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DELETE FROM Student;
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DELETE FROM Student 

WHERE StudentId = 1;
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DELETE FROM Student 

WHERE StudentId IN (1,2,3);
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DELETE FROM Student;
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DELETE FROM Student 

WHERE StudentId = 1;
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DELETE FROM Student 

WHERE StudentId IN (1,2,3);



TRUNCATE Student
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INSERT INTO Student

  (StudentID, FirstName, SecondName,

   LastName, Address, Phone) 

VALUES (1, ‘Peter’, ‘Petrov’, ‘Petrovich’,

                ‘Kazan’, ‘5-44-9247’)

ON CONFLICT (StudentID) DO NOTHING;
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INSERT INTO Student

  (StudentID, FirstName, SecondName,

   LastName, Address, Phone) 

VALUES (1, ‘Peter’, ‘Petrov’, ‘Petrovich’,

                ‘Kazan’, ‘5-44-9247’)

ON CONFLICT (StudentID) 

DO UPDATE SET 

    Address =  EXCLUDED.Address,

                             Phone = ‘123’;
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INSERT INTO Student

  (StudentID, FirstName, SecondName,

   LastName, Address, Phone) 

VALUES (1, ‘Peter’, ‘Petrov’, ‘Petrovich’,

                ‘Kazan’, ‘5-44-9247’)

ON CONFLICT ON CONSTRAINT

 student_pk DO NOTHING;
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MERGE INTO Student

USING dual ON (StudentID = 1)

WHEN MATCHED THEN

  UPDATE SET Address = ‘Moscow’ 

WHEN NOT MATCHED THEN

  INSERT (StudentID, FirstName, 
SecondName,

   LastName, Address, Phone) 

  VALUES (1, ‘Peter’, ‘Petrov’, ‘Petrovich’,

                ‘Kazan’, ‘5-44-9247’);
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MERGE INTO StudentKazan sk

USING (SELECT * 

                FROM Student 

              WHERE Address = ‘Kazan’) s 

ON (sk.StudentID = s.StudentID)

WHEN MATCHED THEN

  UPDATE SET sk.Address = s.Address

WHEN NOT MATCHED THEN

  INSERT (StudentID, FirstName, SecondName,

   LastName, Address, Phone) 

  VALUES (s.StudentID, s.FirstName, 
s.SecondName,

   s.LastName, s.Address, s.Phone);

Azat Yakupov



INSERT INTO Student

  (StudentID, FirstName, SecondName,

   LastName, Address, Phone) 

VALUES (1, ‘Peter’, ‘Petrov’, ‘Petrovich’,

                ‘Kazan’, ‘5-44-9247’)

ON DUPLICATE KEY

UPDATE FirstName = ‘Peter’,

               SecondName = ‘Petrov’,

               LastName = ‘Petrovich’,

               Address = ‘Kazan’

               Phone = ‘5-44-9247’;
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REPLACE INTO Student

VALUES (1, ‘Peter’, ‘Petrov’, ‘Petrovich’, 
‘Kazan’, ‘5-44-9247’);



    SELECT … 

       FROM …

     WHERE …

GROUP BY …

HAVING …

ORDER BY …
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SELECT *

   FROM document

WHERE short_content = ‘тест’

LIMIT 100;
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SELECT *

   FROM document

WHERE deleted = 1

LIMIT 100;
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SELECT *

   FROM document

WHERE short_content = ‘тест’ 

              AND deleted = 1

LIMIT 100;
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SELECT *

   FROM document

WHERE short_content = ‘тест’

OR short_content = ‘Для теста’

LIMIT 100;
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SELECT *

   FROM document

WHERE (short_content = ‘тест’ 

               AND deleted = 1)

              OR

              (short_content = ‘Для теста’)

LIMIT 100;
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SELECT *

   FROM document

WHERE delivery_type = 12 OR

              delivery_type = 21 OR

              delivery_type = 36

LIMIT 100;
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SELECT *

   FROM document

WHERE delivery_type IN (12, 21, 36)

LIMIT 100;
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SELECT *

   FROM document

WHERE delivery_type 

                    BETWEEN 12 AND 36

LIMIT 100;
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SELECT *

   FROM document

WHERE cdate <= now()

LIMIT 100;
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SELECT *

   FROM document

WHERE cdate <= ‘2020-01-20’

LIMIT 100;
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SELECT *

   FROM document

WHERE cdate BETWEEN

 ‘2020-01-20’  AND ‘2021-01-20’

LIMIT 100;
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SELECT *

   FROM document

WHERE cdate BETWEEN ‘2020-01-20’ 

                        AND ‘2021-01-20’

ORDER BY cdate

LIMIT 100;
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SELECT *

   FROM document

WHERE cdate BETWEEN ‘2020-01-20’ 

                        AND ‘2021-01-20’

ORDER BY cdate DESC

LIMIT 100;
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SELECT *

   FROM document

WHERE short_content IS NULL;
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SELECT *

   FROM document

WHERE short_content IS NOT NULL;
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SELECT *

   FROM document

WHERE cdate BETWEEN ‘2020-01-20’ 

                        AND ‘2021-01-20’

ORDER BY cdate 

DESC NULLS FIRST

LIMIT 100;
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SELECT *

   FROM document

WHERE cdate BETWEEN ‘2020-01-20’ 

                        AND ‘2021-01-20’

ORDER BY cdate 

DESC NULLS LAST

LIMIT 100;



Azat Yakupov

UNION

UNION ALL

EXCEPT / MINUS

EXCEPT ALL

INTERSECT

INTERSECT ALL

A B

A B

A B
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(SELECT FirstName AS name, 

               LastName AS desc

   FROM Student)


(SELECT FunName, 

               Description

   FROM Fun);

A

B
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SELECT id

   FROM og_author_type

UNION 

SELECT id

   FROM og_result_ref
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SELECT id

   FROM og_author_type

UNION ALL

SELECT id

   FROM og_result_ref
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SELECT id, name

   FROM og_author_type

UNION

SELECT id, new_name

   FROM og_result_ref
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SELECT id, name

   FROM og_author_type

EXCEPT 

SELECT id, new_name

   FROM og_result_ref
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SELECT id, name

   FROM og_author_type

INTERSECT 

SELECT id, new_name

   FROM og_result_ref



WITH _t1 AS (

     SELECT …

        FROM …

      WHERE … ) ,

          _t2 AS (

     SELECT …

        FROM …

      WHERE …)

SELECT …

FROM A INNER JOIN _t2 ON …

               LEFT JOIN   _t1 ON …
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CTE



WITH regional_sales AS (

         SELECT region, SUM(amount) AS total_sales

            FROM orders

    GROUP BY region),

          top_regions AS (

         SELECT region

            FROM regional_sales

         WHERE total_sales > (SELECT SUM(total_sales)/10 

                                                FROM regional_sales) )

      SELECT region,

                    product,

                    SUM(quantity) AS product_units,

                    SUM(amount) AS product_sales

         FROM orders

      WHERE region IN (SELECT region FROM top_regions)

GROUP BY region, product;
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WITH RECURSIVE _t AS

  (SELECT num, 1 AS level 

     FROM t

   WHERE par_id IS NULL

   UNION 

   SELECT t.num, _t.level + 1 AS level

      FROM t INNER JOIN _t ON (_t.num = t.par_id) )

SELECT num, level

    FROM _t

A

B C

D
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A

B C

D

WITH RECURSIVE _t AS

  (SELECT num,

                  array[num] AS path,

                  FALSE AS cycle

     FROM t

   WHERE par_id IS NULL

   UNION ALL

   SELECT t.num, 

                 _t.path || t.num AS path,

                 t.num = ANY (_t.path) AS cycle

      FROM t INNER JOIN _t ON (_t.num = t.par_id) 

                                                   AND NOT cycle)

SELECT num, path    

   FROM _t
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A

B C

D
SELECT num, LEVEL

    FROM t

START WITH par_id IS NULL

CONNECT BY PRIOR num = par_id

Azat Yakupov



Azat Yakupov

A

B C

D

SELECT num, LEVEL

    FROM t

START WITH par_id IS NULL

CONNECT BY NOCYCLE 

PRIOR num = par_id
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WITH RECURSIVE f (a,b) AS 

  (SELECT 1 AS a, 1 AS b 

    UNION ALL 

   SELECT b, a+b 

      FROM f 

   WHERE b<2000) 

SELECT a 

   FROM f; 
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WITH RECURSIVE f (a,b) AS 

  (SELECT 1 AS a, 1 AS b 

    UNION 

   SELECT a+1 AS a, 

                  b*(a+1) AS b 

      FROM f WHERE a<10) 

SELECT a, b

   FROM f; 



Azat Yakupov

Cartesian Product (cross join)

Equi-join (inner join)

Self join

Left join

Right join

Full join

Natural join

Anti-join (NOT IN, NOT EXISTS)

Semi-join (EXISTS, IN)

Lateral joinJO

IN
S
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SELECT *

   FROM og_result AS og 

                  CROSS JOIN 

              og_region AS ogr

ORDER BY og.id, ogr.id



Azat Yakupov

SELECT *

   FROM og_result AS og, 

              og_region AS ogr

ORDER BY og.id, ogr.id
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SELECT *

    FROM A INNER JOIN B 

               ON A.key = B.key

A B
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SELECT *

    FROM A LEFT JOIN B 

               ON A.key = B.key

A B
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SELECT *

    FROM A RIGHT JOIN B 

               ON A.key = B.key

A B
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SELECT *

    FROM A FULL JOIN B 

               ON A.key = B.key

A B
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SELECT *

    FROM A LEFT JOIN B 

               ON A.key = B.key

WHERE B.key IS NULL

A B
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SELECT *

    FROM A RIGHT JOIN B 

               ON A.key = B.key

WHERE A.key IS NULL

BA
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SELECT *

    FROM A FULL JOIN B 

               ON A.key = B.key

WHERE A.key IS NULL OR

               B.key IS NULL

A B
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INNER

JOIN

=

A B A B



Azat Yakupov

LEFT

JOIN

=

A B

null
null

null

A B
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RIGHT

JOIN

=

A B

null

null
null

A B
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FULL

JOIN

=

A B

null
null
null

null
null

null

A B
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SELECT doc.id, 

              doc.short_content,

              dk.project

   FROM document doc

              INNER JOIN document_kind dk 

              ON doc.document_kind = dk.id
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SELECT doc.id, 

              doc.short_content,

              dk.project

   FROM document doc

              LEFT JOIN document_kind dk 

              ON doc.document_kind = dk.id
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SELECT doc.id, 

              doc.short_content,

              dk.project

   FROM document doc

              RIGHT JOIN document_kind dk 

              ON doc.document_kind = dk.id
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SELECT doc.id, 

              doc.short_content,

              dk.project

   FROM document doc

              FULL JOIN document_kind dk 

              ON doc.document_kind = dk.id
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SELECT doc.id, 

              doc.short_content, 

              dk.project

   FROM document doc

        INNER JOIN document_kind dk 

              ON doc.document_kind = dk.id

        INNER JOIN document_delivery_types ddt 

              ON doc.delivery_type = ddt.id
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SELECT doc.id, 

              doc.short_content, 

              dk.project

   FROM document doc

        RIGHT JOIN document_kind dk 

              ON doc.document_kind = dk.id

        LEFT JOIN document_delivery_types ddt 

              ON doc.delivery_type = ddt.id
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SELECT doc.id, 

              doc.short_content, 

              dk.project

   FROM document doc

        RIGHT JOIN document_kind dk 

              ON doc.document_kind = dk.id

        LEFT JOIN document_delivery_types ddt 

              ON doc.delivery_type = ddt.id

WHERE doc.deleted != 1

http://ddt.id
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SELECT *

    FROM Student

 WHERE StudentID IN 

                          (SELECT id 

                              FROM Hobby)
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SELECT *

    FROM Student

 WHERE StudentID NOT IN 

                          (SELECT id 

                              FROM Hobby)
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SELECT *

   FROM document doc

WHERE document_kind IN 

              (SELECT id 

                  FROM document_kind

                WHERE category = 1)
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SELECT *

    FROM Student s

 WHERE EXISTS 

              (SELECT 1 

                  FROM Hobby sh 

                WHERE s.id = sh.StudentID)

http://s.id
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SELECT *

    FROM Student s

 WHERE NOT EXISTS 

              (SELECT 1 

                  FROM Hobby sh 

                WHERE s.id = sh.StudentID)

http://s.id
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SELECT *

   FROM document doc

WHERE EXISTS 

          (SELECT 1 

              FROM document_kind dk 

           WHERE doc.document_kind = dk.id

              LIMIT 1)
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SELECT *

   FROM document doc

WHERE EXISTS 

          (SELECT 1 

              FROM document_kind dk 

           WHERE doc.document_kind = dk.id

                         AND category = 1

              LIMIT 1)

http://dk.id
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SELECT *

   FROM document doc

WHERE EXISTS 

          (SELECT 0 

              FROM document_kind dk 

           WHERE doc.document_kind = dk.id

              LIMIT 1)
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SELECT *

   FROM document doc

WHERE EXISTS 

          (SELECT null 

              FROM document_kind dk 

           WHERE doc.document_kind = dk.id

              LIMIT 1)
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SELECT *

  FROM P NATURAL JOIN S
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SELECT *

  FROM P NATURAL JOIN S

SELECT *

  FROM P CROSS JOIN S

 WHERE P.ID = S.ID

~



Azat Yakupov

SELECT *

   FROM document doc

        CROSS JOIN LATERAL

 (SELECT id 

     FROM document_kind dk

  WHERE category = 1 AND 

            dk.id = doc.document_kind) AS t1
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SELECT *

   FROM document doc

        CROSS JOIN LATERAL

        (SELECT id FROM document_kind dk

          WHERE category = 1 AND 

                        dk.id = doc.document_kind) AS t1

SELECT *

   FROM document doc

WHERE document_kind IN 

              (SELECT id 

                  FROM document_kind

                WHERE category = 1)

~
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DCL



Table
Table

ViewMView

Procedure

Function

Users

Roles

DB Objects
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permissions

permissionsrole

role
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DB Object

Owner

SuperUser
Role

Role

Users
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GRANT SELECT ON … TO …

GRANT INSERT ON … TO …

GRANT UPDATE ON … TO …

GRANT DELETE ON … TO …

GRANT TRUNCATE ON … TO …
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GRANT ALTER ON … TO …

GRANT INDEX ON … TO …

GRANT REFERENCES ON … TO …

GRANT CREATE ON … TO …
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GRANT EXECUTE ON … TO …

GRANT USAGE ON … TO …

GRANT TEMPORARY ON … TO …

GRANT CONNECT ON … TO …

GRANT TRIGGER ON … TO …
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GRANT SELECT(Phone), 

             UPDATE(Address) 

                                  ON Student TO test;

GRANT TRUNCATE ON Student TO test1;

GRANT ALL ON Student TO test2;

GRANT SELECT ON Student TO test;
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REVOKE SELECT ON Student FROM test;

REVOKE ALL ON Student FROM test2;
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CREATE USER test WITH PASSWORD ‘123’;

CREATE USER test IDENTIFIED BY ‘123’;

CREATE USER test@‘%’ IDENTIFIED BY ‘123’;
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CREATE ROLE test1;

CREATE ROLE test2;

GRANT test1 TO test2;

REVOKE test1 FROM test2;
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GRANT SELECT ON Student TO test

WITH GRANT OPTION;
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REVOKE SELECT ON Student FROM test

CASCADE;
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REVOKE GRANT OPTION FOR

  SELECT ON Student FROM test 

CASCADE;
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COMMIT;
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