
Relational
 Databases

Lecturer: Азат Якупов (Azat Yakupov)

https://datalaboratory.one

https://datalaboratory.one

Azat Yakupov

DCL

DDL

DML

TCL

SQL

1986
SQL-86

1989
SQL-89

1992
SQL-92

1999
SQL:1999

2003
SQL:2003

2006
SQL:2006

2008
SQL:2008

2011
SQL:2011

2016
SQL:2016

Azat Yakupov

2020
SQL:2020+

19
92

SQL-9
2 UNION JOIN, NATURAL JOIN, DIFFERENCE, INTERSECTION

CASE, CAST

ALTER , DROP

CHECK constraints

information_schema is a metadata layer

Transaction Isolation Levels, Dynamic SQL, Temporary Tables

DATE, TIME, TIMESTAMP, INTERVAL, BIT, VARCHAR, NCHAR

Database cursors

Azat Yakupov

19
99

SQL-9
9

Azat Yakupov

Recursive Queries

Database triggers

Common Table Expressions (CTE)

Arrays

BOOLEAN data type

ROLLUP, CUBE, GROUPING SETS

CREATE ROLE

UNNEST

20
03

SQL:2
00

3

Azat Yakupov

XML-related features (SQL/XML)

Window functions

MERGE

Sequence generator

auto-generated columns

CREATE TABLE AS …

CREATE TABLE LIKE …

BIT and BIT VARYING data types

OLAP extended with window functions

20
06

SQL:2
00

6

Azat Yakupov

XQuery

XML manipulation in database

XML-related features (SQL/XML)

20
08

SQL:2
00

8

Azat Yakupov

MERGE and DIAGNOSTIC statements

TRUNCATE TABLE

partitioned JOIN tables

WHEN clauses in a CASE expression

INSTEAD OF database triggers

enhanced XQuery

enhancements to derived column names

FETCH clause

20
11

SQL:2
01

1

Azat Yakupov

PERIOD FOR

enhancements for window functions and

FETCH clause

chronological databases (~ temporal databases)

20
16

SQL:2
01

6

Azat Yakupov

JSON support

regular expressions

Polymorphic table functions

Date and time formatting and parsing

LISTAGG

Data type DECFLOAT

20
19

SQL:2
01

9

Azat Yakupov

Multi-Dimensional Arrays

20
20

SQL:2
02

0+

Azat Yakupov

SQL / GraphQL

Azat Yakupov

DML

Azat Yakupov

C R U D
e
a
d

r
e
a
t
e

p
d
a
t
e

e
l
e
t
e

Azat Yakupov

C R U D
IN

SE
RT

SE
LE

C
T

U
PD

AT
E

D
EL

ET
E

INSERT INTO Student

 (StudentID, FirstName, SecondName,

 LastName, Address, Phone)

VALUES (1, ‘Peter’, ‘Petrov’, ‘Petrovich’,

 ‘Kazan’, ‘5-44-9247’);

Azat Yakupov

INSERT INTO Student

 (StudentID, FirstName, SecondName,

 LastName, Address, Phone)

VALUES (DEFAULT, ‘Peter’, ‘Petrov’,
‘Petrovich’, ‘Kazan’, ‘5-44-9247’);

Azat Yakupov

INSERT INTO Student

DEFAULT VALUES;

Azat Yakupov

INSERT INTO Student

 (StudentID, FirstName, SecondName,

 LastName, Address, Phone)

VALUES (1, ‘Peter’, ‘Petrov’, ‘Petrovich’,

 ‘Kazan’, ‘5-44-9247’),

 (2, ‘Ivan’, ‘Ivanov’, ‘Ivanovich’,

 ‘Moscow’, ‘3-14-7381’) ;

Azat Yakupov

Azat Yakupov

CREATE TABLE s_kazan

AS

SELECT *

 FROM Student

WHERE Address = ‘Kazan’;

INSERT INTO s_kazan

SELECT *

 FROM Student

WHERE Address = ‘Kazan’;

Azat Yakupov

INSERT INTO Student

 (StudentID, FirstName, SecondName,

 LastName, Address, Phone)

VALUES (1, ‘Peter’, ‘Petrov’, ‘Petrovich’,

 ‘Kazan’, ‘5-44-9247’);

Azat Yakupov

Azat Yakupov

INSERT ALL

 INTO Student

 (StudentID, FirstName, SecondName,

 LastName, Address, Phone)

 VALUES (1, ‘Peter’, ‘Petrov’, ‘Petrovich’,

 ‘Kazan’, ‘5-44-9247’)

 INTO Student

 (StudentID, FirstName, SecondName,

 LastName, Address, Phone)

 VALUES(2, ‘Ivan’, ‘Ivanov’, ‘Ivanovich’,

 ‘Moscow’, ‘3-14-7381’)

 INTO Fun (FanId, Name)

 VALUES(1, ‘Party’)

SELECT * FROM DUAL;

Azat Yakupov

CREATE TABLE s_kazan

AS

SELECT *

 FROM Student

WHERE Address = ‘Kazan’;

Azat Yakupov

INSERT INTO s_kazan

SELECT *

 FROM Student

WHERE Address = ‘Kazan’;

INSERT INTO Student

 (StudentID, FirstName, SecondName,

 LastName, Address, Phone)

VALUES (1, ‘Peter’, ‘Petrov’, ‘Petrovich’,

 ‘Kazan’, ‘5-44-9247’);

Azat Yakupov

Azat Yakupov

CREATE TABLE s_kazan

AS

SELECT *

 FROM Student

WHERE Address = ‘Kazan’;

Azat Yakupov

INSERT INTO s_kazan

SELECT *

 FROM Student

WHERE Address = ‘Kazan’;

INSERT INTO Student

 (StudentID, FirstName, SecondName,

 LastName, Address, Phone)

VALUES (1, ‘Peter’, ‘Petrov’, ‘Petrovich’,

 ‘Kazan’, ‘5-44-9247’),

 (2, ‘Ivan’, ‘Ivanov’, ‘Ivanovich’,

 ‘Moscow’, ‘3-14-7381’) ;

Azat Yakupov

Azat Yakupov

UPDATE Student

 SET Address = ‘Kazan’,

 Phone = DEFAULT

WHERE StudentId = 1;

Azat Yakupov

WITH cte_upd AS

 (UPDATE Student

 SET Address = ‘Kazan’

 WHERE StudentID > 1000

 RETURNING *)

INSERT INTO Student_log

 SELECT *, current_timestamp

 FROM cte_upd;

Azat Yakupov

UPDATE Student

 SET Address = ‘Kazan’

WHERE StudentId = 1;

Azat Yakupov

UPDATE Student

 SET Address = ‘Kazan’

WHERE StudentId = 1;

Azat Yakupov

UPDATE Student

 SET StudentId = StudentId + 1

ORDER BY StudentId DESC;

Azat Yakupov

UPDATE Student, Addresses

 SET Student.Address =

 Addresses.Address

WHERE Student.ID =

 Addresses.Student_ID

Azat Yakupov

UPDATE Student

 SET Phone = CONCAT(‘555’, Phone)

LIMIT 100;

Azat Yakupov

DELETE FROM Student;

Azat Yakupov

DELETE FROM Student

WHERE StudentId = 1;

Azat Yakupov

DELETE FROM Student

WHERE StudentId IN (1,2,3);

Azat Yakupov

DELETE FROM Student;

Azat Yakupov

DELETE FROM Student

WHERE StudentId = 1;

Azat Yakupov

DELETE FROM Student

WHERE StudentId IN (1,2,3);

Azat Yakupov

DELETE FROM Student;

Azat Yakupov

DELETE FROM Student

WHERE StudentId = 1;

Azat Yakupov

DELETE FROM Student

WHERE StudentId IN (1,2,3);

TRUNCATE Student

Azat Yakupov

INSERT INTO Student

 (StudentID, FirstName, SecondName,

 LastName, Address, Phone)

VALUES (1, ‘Peter’, ‘Petrov’, ‘Petrovich’,

 ‘Kazan’, ‘5-44-9247’)

ON CONFLICT (StudentID) DO NOTHING;

Azat Yakupov

INSERT INTO Student

 (StudentID, FirstName, SecondName,

 LastName, Address, Phone)

VALUES (1, ‘Peter’, ‘Petrov’, ‘Petrovich’,

 ‘Kazan’, ‘5-44-9247’)

ON CONFLICT (StudentID)

DO UPDATE SET

 Address = EXCLUDED.Address,

 Phone = ‘123’;

Azat Yakupov

INSERT INTO Student

 (StudentID, FirstName, SecondName,

 LastName, Address, Phone)

VALUES (1, ‘Peter’, ‘Petrov’, ‘Petrovich’,

 ‘Kazan’, ‘5-44-9247’)

ON CONFLICT ON CONSTRAINT

 student_pk DO NOTHING;

Azat Yakupov

MERGE INTO Student

USING dual ON (StudentID = 1)

WHEN MATCHED THEN

 UPDATE SET Address = ‘Moscow’

WHEN NOT MATCHED THEN

 INSERT (StudentID, FirstName,
SecondName,

 LastName, Address, Phone)

 VALUES (1, ‘Peter’, ‘Petrov’, ‘Petrovich’,

 ‘Kazan’, ‘5-44-9247’);

Azat Yakupov

MERGE INTO StudentKazan sk

USING (SELECT *

 FROM Student

 WHERE Address = ‘Kazan’) s

ON (sk.StudentID = s.StudentID)

WHEN MATCHED THEN

 UPDATE SET sk.Address = s.Address

WHEN NOT MATCHED THEN

 INSERT (StudentID, FirstName, SecondName,

 LastName, Address, Phone)

 VALUES (s.StudentID, s.FirstName,
s.SecondName,

 s.LastName, s.Address, s.Phone);

Azat Yakupov

INSERT INTO Student

 (StudentID, FirstName, SecondName,

 LastName, Address, Phone)

VALUES (1, ‘Peter’, ‘Petrov’, ‘Petrovich’,

 ‘Kazan’, ‘5-44-9247’)

ON DUPLICATE KEY

UPDATE FirstName = ‘Peter’,

 SecondName = ‘Petrov’,

 LastName = ‘Petrovich’,

 Address = ‘Kazan’

 Phone = ‘5-44-9247’;

Azat Yakupov

Azat Yakupov

REPLACE INTO Student

VALUES (1, ‘Peter’, ‘Petrov’, ‘Petrovich’,
‘Kazan’, ‘5-44-9247’);

 SELECT …

 FROM …

 WHERE …

GROUP BY …

HAVING …

ORDER BY …

Azat Yakupov

Azat Yakupov

SELECT *

 FROM document

WHERE short_content = ‘тест’

LIMIT 100;

Azat Yakupov

SELECT *

 FROM document

WHERE deleted = 1

LIMIT 100;

Azat Yakupov

SELECT *

 FROM document

WHERE short_content = ‘тест’

 AND deleted = 1

LIMIT 100;

Azat Yakupov

SELECT *

 FROM document

WHERE short_content = ‘тест’

OR short_content = ‘Для теста’

LIMIT 100;

Azat Yakupov

SELECT *

 FROM document

WHERE (short_content = ‘тест’

 AND deleted = 1)

 OR

 (short_content = ‘Для теста’)

LIMIT 100;

Azat Yakupov

SELECT *

 FROM document

WHERE delivery_type = 12 OR

 delivery_type = 21 OR

 delivery_type = 36

LIMIT 100;

Azat Yakupov

SELECT *

 FROM document

WHERE delivery_type IN (12, 21, 36)

LIMIT 100;

Azat Yakupov

SELECT *

 FROM document

WHERE delivery_type

 BETWEEN 12 AND 36

LIMIT 100;

Azat Yakupov

SELECT *

 FROM document

WHERE cdate <= now()

LIMIT 100;

Azat Yakupov

SELECT *

 FROM document

WHERE cdate <= ‘2020-01-20’

LIMIT 100;

Azat Yakupov

SELECT *

 FROM document

WHERE cdate BETWEEN

 ‘2020-01-20’ AND ‘2021-01-20’

LIMIT 100;

Azat Yakupov

SELECT *

 FROM document

WHERE cdate BETWEEN ‘2020-01-20’

 AND ‘2021-01-20’

ORDER BY cdate

LIMIT 100;

Azat Yakupov

SELECT *

 FROM document

WHERE cdate BETWEEN ‘2020-01-20’

 AND ‘2021-01-20’

ORDER BY cdate DESC

LIMIT 100;

Azat Yakupov

SELECT *

 FROM document

WHERE short_content IS NULL;

Azat Yakupov

SELECT *

 FROM document

WHERE short_content IS NOT NULL;

Azat Yakupov

SELECT *

 FROM document

WHERE cdate BETWEEN ‘2020-01-20’

 AND ‘2021-01-20’

ORDER BY cdate

DESC NULLS FIRST

LIMIT 100;

Azat Yakupov

SELECT *

 FROM document

WHERE cdate BETWEEN ‘2020-01-20’

 AND ‘2021-01-20’

ORDER BY cdate

DESC NULLS LAST

LIMIT 100;

Azat Yakupov

UNION

UNION ALL

EXCEPT / MINUS

EXCEPT ALL

INTERSECT

INTERSECT ALL

A B

A B

A B

Azat Yakupov

(SELECT FirstName AS name,

 LastName AS desc

 FROM Student)

(SELECT FunName,

 Description

 FROM Fun);

A

B

Azat Yakupov

SELECT id

 FROM og_author_type

UNION

SELECT id

 FROM og_result_ref

Azat Yakupov

SELECT id

 FROM og_author_type

UNION ALL

SELECT id

 FROM og_result_ref

Azat Yakupov

SELECT id, name

 FROM og_author_type

UNION

SELECT id, new_name

 FROM og_result_ref

Azat Yakupov

SELECT id, name

 FROM og_author_type

EXCEPT

SELECT id, new_name

 FROM og_result_ref

Azat Yakupov

SELECT id, name

 FROM og_author_type

INTERSECT

SELECT id, new_name

 FROM og_result_ref

WITH _t1 AS (

 SELECT …

 FROM …

 WHERE …) ,

 _t2 AS (

 SELECT …

 FROM …

 WHERE …)

SELECT …

FROM A INNER JOIN _t2 ON …

 LEFT JOIN _t1 ON …

Azat Yakupov

CTE

WITH regional_sales AS (

 SELECT region, SUM(amount) AS total_sales

 FROM orders

 GROUP BY region),

 top_regions AS (

 SELECT region

 FROM regional_sales

 WHERE total_sales > (SELECT SUM(total_sales)/10

 FROM regional_sales))

 SELECT region,

 product,

 SUM(quantity) AS product_units,

 SUM(amount) AS product_sales

 FROM orders

 WHERE region IN (SELECT region FROM top_regions)

GROUP BY region, product;

Azat Yakupov

Azat Yakupov

WITH RECURSIVE _t AS

 (SELECT num, 1 AS level

 FROM t

 WHERE par_id IS NULL

 UNION

 SELECT t.num, _t.level + 1 AS level

 FROM t INNER JOIN _t ON (_t.num = t.par_id))

SELECT num, level

 FROM _t

A

B C

D

Azat Yakupov

A

B C

D

WITH RECURSIVE _t AS

 (SELECT num,

 array[num] AS path,

 FALSE AS cycle

 FROM t

 WHERE par_id IS NULL

 UNION ALL

 SELECT t.num,

 _t.path || t.num AS path,

 t.num = ANY (_t.path) AS cycle

 FROM t INNER JOIN _t ON (_t.num = t.par_id)

 AND NOT cycle)

SELECT num, path

 FROM _t

Azat Yakupov

A

B C

D
SELECT num, LEVEL

 FROM t

START WITH par_id IS NULL

CONNECT BY PRIOR num = par_id

Azat Yakupov

Azat Yakupov

A

B C

D

SELECT num, LEVEL

 FROM t

START WITH par_id IS NULL

CONNECT BY NOCYCLE

PRIOR num = par_id

Azat Yakupov

Azat Yakupov

WITH RECURSIVE f (a,b) AS

 (SELECT 1 AS a, 1 AS b

 UNION ALL

 SELECT b, a+b

 FROM f

 WHERE b<2000)

SELECT a

 FROM f;

Azat Yakupov

WITH RECURSIVE f (a,b) AS

 (SELECT 1 AS a, 1 AS b

 UNION

 SELECT a+1 AS a,

 b*(a+1) AS b

 FROM f WHERE a<10)

SELECT a, b

 FROM f;

Azat Yakupov

Cartesian Product (cross join)

Equi-join (inner join)

Self join

Left join

Right join

Full join

Natural join

Anti-join (NOT IN, NOT EXISTS)

Semi-join (EXISTS, IN)

Lateral joinJO

IN
S

Azat Yakupov

SELECT *

 FROM og_result AS og

 CROSS JOIN

 og_region AS ogr

ORDER BY og.id, ogr.id

Azat Yakupov

SELECT *

 FROM og_result AS og,

 og_region AS ogr

ORDER BY og.id, ogr.id

Azat Yakupov

SELECT *

 FROM A INNER JOIN B

 ON A.key = B.key

A B

Azat Yakupov

SELECT *

 FROM A LEFT JOIN B

 ON A.key = B.key

A B

Azat Yakupov

SELECT *

 FROM A RIGHT JOIN B

 ON A.key = B.key

A B

Azat Yakupov

SELECT *

 FROM A FULL JOIN B

 ON A.key = B.key

A B

Azat Yakupov

SELECT *

 FROM A LEFT JOIN B

 ON A.key = B.key

WHERE B.key IS NULL

A B

Azat Yakupov

SELECT *

 FROM A RIGHT JOIN B

 ON A.key = B.key

WHERE A.key IS NULL

BA

Azat Yakupov

SELECT *

 FROM A FULL JOIN B

 ON A.key = B.key

WHERE A.key IS NULL OR

 B.key IS NULL

A B

Azat Yakupov

INNER

JOIN

=

A B A B

Azat Yakupov

LEFT

JOIN

=

A B

null
null

null

A B

Azat Yakupov

RIGHT

JOIN

=

A B

null

null
null

A B

Azat Yakupov

FULL

JOIN

=

A B

null
null
null

null
null

null

A B

Azat Yakupov

SELECT doc.id,

 doc.short_content,

 dk.project

 FROM document doc

 INNER JOIN document_kind dk

 ON doc.document_kind = dk.id

Azat Yakupov

SELECT doc.id,

 doc.short_content,

 dk.project

 FROM document doc

 LEFT JOIN document_kind dk

 ON doc.document_kind = dk.id

Azat Yakupov

SELECT doc.id,

 doc.short_content,

 dk.project

 FROM document doc

 RIGHT JOIN document_kind dk

 ON doc.document_kind = dk.id

Azat Yakupov

SELECT doc.id,

 doc.short_content,

 dk.project

 FROM document doc

 FULL JOIN document_kind dk

 ON doc.document_kind = dk.id

Azat Yakupov

SELECT doc.id,

 doc.short_content,

 dk.project

 FROM document doc

 INNER JOIN document_kind dk

 ON doc.document_kind = dk.id

 INNER JOIN document_delivery_types ddt

 ON doc.delivery_type = ddt.id

Azat Yakupov

SELECT doc.id,

 doc.short_content,

 dk.project

 FROM document doc

 RIGHT JOIN document_kind dk

 ON doc.document_kind = dk.id

 LEFT JOIN document_delivery_types ddt

 ON doc.delivery_type = ddt.id

Azat Yakupov

SELECT doc.id,

 doc.short_content,

 dk.project

 FROM document doc

 RIGHT JOIN document_kind dk

 ON doc.document_kind = dk.id

 LEFT JOIN document_delivery_types ddt

 ON doc.delivery_type = ddt.id

WHERE doc.deleted != 1

http://ddt.id

Azat Yakupov

SELECT *

 FROM Student

 WHERE StudentID IN

 (SELECT id

 FROM Hobby)

Azat Yakupov

SELECT *

 FROM Student

 WHERE StudentID NOT IN

 (SELECT id

 FROM Hobby)

Azat Yakupov

SELECT *

 FROM document doc

WHERE document_kind IN

 (SELECT id

 FROM document_kind

 WHERE category = 1)

Azat Yakupov

SELECT *

 FROM Student s

 WHERE EXISTS

 (SELECT 1

 FROM Hobby sh

 WHERE s.id = sh.StudentID)

http://s.id

Azat Yakupov

SELECT *

 FROM Student s

 WHERE NOT EXISTS

 (SELECT 1

 FROM Hobby sh

 WHERE s.id = sh.StudentID)

http://s.id

Azat Yakupov

SELECT *

 FROM document doc

WHERE EXISTS

 (SELECT 1

 FROM document_kind dk

 WHERE doc.document_kind = dk.id

 LIMIT 1)

Azat Yakupov

SELECT *

 FROM document doc

WHERE EXISTS

 (SELECT 1

 FROM document_kind dk

 WHERE doc.document_kind = dk.id

 AND category = 1

 LIMIT 1)

http://dk.id

Azat Yakupov

SELECT *

 FROM document doc

WHERE EXISTS

 (SELECT 0

 FROM document_kind dk

 WHERE doc.document_kind = dk.id

 LIMIT 1)

Azat Yakupov

SELECT *

 FROM document doc

WHERE EXISTS

 (SELECT null

 FROM document_kind dk

 WHERE doc.document_kind = dk.id

 LIMIT 1)

Azat Yakupov

SELECT *

 FROM P NATURAL JOIN S

Azat Yakupov

SELECT *

 FROM P NATURAL JOIN S

SELECT *

 FROM P CROSS JOIN S

 WHERE P.ID = S.ID

~

Azat Yakupov

SELECT *

 FROM document doc

 CROSS JOIN LATERAL

 (SELECT id

 FROM document_kind dk

 WHERE category = 1 AND

 dk.id = doc.document_kind) AS t1

Azat Yakupov

SELECT *

 FROM document doc

 CROSS JOIN LATERAL

 (SELECT id FROM document_kind dk

 WHERE category = 1 AND

 dk.id = doc.document_kind) AS t1

SELECT *

 FROM document doc

WHERE document_kind IN

 (SELECT id

 FROM document_kind

 WHERE category = 1)

~

Azat Yakupov

DCL

Table
Table

ViewMView

Procedure

Function

Users

Roles

DB Objects

Azat Yakupov

permissions

permissionsrole

role
Azat Yakupov

DB Object

Owner

SuperUser
Role

Role

Users

Azat Yakupov

GRANT SELECT ON … TO …

GRANT INSERT ON … TO …

GRANT UPDATE ON … TO …

GRANT DELETE ON … TO …

GRANT TRUNCATE ON … TO …

Azat Yakupov

GRANT ALTER ON … TO …

GRANT INDEX ON … TO …

GRANT REFERENCES ON … TO …

GRANT CREATE ON … TO …

Azat Yakupov

GRANT EXECUTE ON … TO …

GRANT USAGE ON … TO …

GRANT TEMPORARY ON … TO …

GRANT CONNECT ON … TO …

GRANT TRIGGER ON … TO …

Azat Yakupov

GRANT SELECT(Phone),

 UPDATE(Address)

 ON Student TO test;

GRANT TRUNCATE ON Student TO test1;

GRANT ALL ON Student TO test2;

GRANT SELECT ON Student TO test;

Azat Yakupov

REVOKE SELECT ON Student FROM test;

REVOKE ALL ON Student FROM test2;

Azat Yakupov

CREATE USER test WITH PASSWORD ‘123’;

CREATE USER test IDENTIFIED BY ‘123’;

CREATE USER test@‘%’ IDENTIFIED BY ‘123’;

Azat Yakupov

CREATE ROLE test1;

CREATE ROLE test2;

GRANT test1 TO test2;

REVOKE test1 FROM test2;

Azat Yakupov

GRANT SELECT ON Student TO test

WITH GRANT OPTION;

Azat Yakupov

REVOKE SELECT ON Student FROM test

CASCADE;

Azat Yakupov

REVOKE GRANT OPTION FOR

 SELECT ON Student FROM test

CASCADE;

Azat Yakupov

COMMIT;

Azat Yakupov

