
Relational
 Databases

Lecturer: Азат Якупов (Azat Yakupov)

https://datalaboratory.one

https://datalaboratory.one

Edgar F. Codd defined a relational model
in 1969.

All data is represented like tuples and
grouped into relations.

The purpose of the Relational Model is to
provide possibility for specifying data and
queries

The Relational Model was the first database model

which is described in formal mathematical terms

Azat Yakupov

The Information

Rule

Guaranteed
Access Rule

It’s not be possible to bypass the integrity

rules defined through the database

language by using lower-level languages

All information in a RDBMS (including

table and column names) is represented

explicitly as values in tables

Every value in RDBMS is guaranteed

to be accessible by using a combination

of the table name, primary key value and

column name

Nonsubversion

Rule

Azat Yakupov

Systematic NULL
value Support

Active Online

Relational
Catalog

Comprehensive
Data

Sublanguage

A RDBMS provides systematic support

for the treatment of null values

The description of RDBMS and

it’s contents is represented at the logical

level as tables and can be queried using

database language

Must be at least one language supported

with well-defined syntax.

Supports DML, DDL, integrity rules,

authorisation and transactions

Azat Yakupov

View Updating

Rule

High-Level

Insert,
Update, Delete

Physical Data
Independence

All views that are theoretically updatable

can be updated through the system

The RDBMS supports Insert, Update,

Delete operations not only for one row

but for any set of rows also

Application programs are logically

unaffected when physical access methods

or disk storage structures are altered

Azat Yakupov

Logical Data
Independence

Integrity
Independence

Distribution
Independence

The RDBMS language must be capable

of defining integrity rules. Rules must be

stored in the on-line catalog and they

can not be bypassed.

Application programs are logically

unaffected, to the extent possible, when

changes are made to the table structures

Application programs are logically

unaffected, to the extent possible, when

data is first distributed or when it is

redistributed

Azat Yakupov

Chris Date Hugh Darwen

Chris Date ,

Hugh Darwen

continued to explain an
implementation of the
Relational Database Model.

No one current RDBMS fully covers Relational Model design.

A closest physical attempt to describe Relational Model

is desktop database “Rel” completely based on Tutorial D language

Azat Yakupov

 is cartesian productD1 × D2 × . . . × Dn

 are domainsD1, D2, . . . , Dn

Named relation’s column is attribute with unique name

Elements of cartesian product are called tuples

Amount of all tuples is cardinality of relation

 is relation’s degreeR ⊆ D1 × D2 × . . . × Dn , n

Relation defined on sets R D1, D2, D3, . . . , Dn

is called arbitrary subset

Azat Yakupov

R(A, B) = R(B, A)

A B
1 1
1 2
3 2

B A
1 1
2 1
2 3

=

Relation’s schema is list of attributes names with domains

 with attributes has schema R A1, A2, . . . , Ak R(A1, A2, . . . , Ak)

Azat Yakupov

 are attributesA1, A2, . . . , An

 are typesT1, T2, . . . , Tn

Relation contains 2 main elementsR

Header - is tuple’s header. Relation has the same
attributes and the same degree level like defined
header
Body - is a set of tuples with the same header.
Cardinality of relation equals amount of tuples
from defined set

R = RELATION{A1 : T1, A2 : T2 . . . , An : Tn}

Azat Yakupov

R = RELATION{A : integer, B : integer, . . . , C : string}

A : integer B : integer C : string

1 1 ‘string #1’

1 2 ‘string #1’

3 2 ‘string #3’

Azat Yakupov

A B W Y Z
1 1 1 1 1
1 1 3 2 1
1 2 1 1 1
1 2 3 2 1
3 2 1 1 1
3 2 3 2 1

×
A B
1 1
1 2
3 2

W Y Z

1 1 1
3 2 1

=

R S
Z

Azat Yakupov

dID dName dCntProjects dAvgPoint
1 Ivan 3 5
2 Peter 2 3,5

pName pManagerName pPriority

Project #1 Ivan Ivanov high

×

=
dID dName dCntProjects dAvgPoint pName pManagerName pPriority

1 Ivan 3 5 Project #1 Ivan Ivanov high

2 Peter 2 3,5 Project #1 Ivan Ivanov high

Azat Yakupov

The same tuple cannot
appear more than once
in a relation

A B C
1 2 3
1 1 1
2 3 1
1 2 3

R(A, B, C) =

The same row can
appear more than
once in an SQL table

A B C
1 2 3
1 1 1
2 3 1
1 2 3

SELECT A,B,C

 FROM R;

Math
em

ati
ca

l

 M
odel

Rea
lity

Azat Yakupov

Any ordering for tuples
in a relation

R(A, B, C) =

Set ORDER BY
clause for table
explicitly.

SELECT A,B,C

 FROM R

ORDER BY A,B,C;

Math
em

ati
ca

l

 M
odel

Rea
lity

Azat Yakupov

A B C
1 2 3
1 1 1
2 3 1
1 2 4

A B C
1 1 1
1 2 3
1 2 4
2 3 1

Any ordering for
attributes in a relation

There is a defined
ordering in metadata
for columns. We can
play with ordering in
a SELECT clause

SELECT *

 FROM R;

Math
em

ati
ca

l

 M
odel

Rea
lity

Azat Yakupov

A B F C
1 2 0 3
1 1 0 1
2 3 0 1
1 2 0 4

R(A, B, F, C) =

A B C F
1 2 3 0
1 1 1 0
2 3 1 0
1 2 4 0

Value of each attribute is
atomic for a relation

R(A, B, C) =

To reach the better
performance we can
avoid a relational

model

Math
em

ati
ca

l

 M
odel

Rea
lity

Azat Yakupov

A B C
1 2 3
1 1 1
2 3 1
1 2 4

A Point
1 (2, 3)
1 (1, 1)
2 (3, 1)
1 (2, 4)

SELECT *

 FROM R;

No way to use
unnamed attribute in
a relation

R(A, B, C) =

We can set unnamed
column in SQL query.

Math
em

ati
ca

l

 M
odel

Rea
lity

Azat Yakupov

A B C
1 2 3
1 1 1
2 3 1
1 2 4

SELECT A,B,A+B

 FROM R;

A B ?
1 2 3
1 1 2
2 3 5
1 2 3

No way to make
duplicate names for a
attributes in a relation

R(A, B, C) =

We can set column’s
duplicates by SQL
query.

Math
em

ati
ca

l

 M
odel

Rea
lity

Azat Yakupov

A B C
1 2 3
1 1 1
2 3 1
1 2 4

SELECT A,

 B AS A,

 C

 FROM R;

A A C
1 2 3
1 1 1
2 3 1
1 2 4

NULL () means
“missing or inapplicable
information”

ω
R(A, B, C) =

We can use/get a
keyword NULL

Math
em

ati
ca

l

 M
odel

Rea
lity

Azat Yakupov

A B C
2 3

1 1
2 1
1 2 4

SELECT *

 FROM R;

ω
ω

ω

A B C
null 2 3
1 1 null

2 null 1
1 2 4

SELECT *

 FROM R;

SELECT *

 FROM R

WHERE (A = 1)

 OR (A!= 1);

SELECT *

 FROM R

WHERE (A = 1) OR

 (A!= 1) OR
 A IS NULL;

A B C
null 2 3
1 1 null

2 null 1
1 2 4

A B C
1 1 null

2 null 1
1 2 4

A B C
null 2 3
1 1 null

2 null 1
1 2 4

Azat Yakupov

'Hello '|| NULL ||' world!' 'Hello world!'

'Hello '|| NULL ||' world!' NULL

Azat Yakupov

“All information in the database must
be cast explicitly in terms of values in

relations and in no other way”

Information Principle

ID Person

1 Ivan Ivanov

ID Hobby PersonId

1 music 1

2 blog 1
Azat Yakupov

 means no attributes for , or relation’s degree equals 0R(Ø) R

TABLE_DEE (~ DEE) - a relation with one zero-tuple!R(Ø)

TABLE_DUM (~ DUM) - a relation without any tuples!R(Ø)

There are 2 pseudonymous relations by Hugh Darwen

RELATION{ } { TUPLE { } }

RELATION{ } { } ∼ False

∼ True

Azat Yakupov

R = S
R ≠ S

R ⊆ S

R ⊂ S

R ⊇ S

R ⊃ S

A B
1 1
2 0
1 2

R
A B C
1 4 5
2 3 3
1 2 1

S

R(A) = S(A)
R(B) ≠ S(B)
R(A) ⊆ S(A)
R(A) ⊇ S(A)

Azat Yakupov

IS_EMPTY(< relational_exp >) = True |False

IS_EMPTY(R(A, B)) = False

IS_EMPTY(R(A, B) × S(C)) = False

A B
1 1
2 0
1 2

R
A B C
1 4 5
2 3 3
1 2 1

S

Azat Yakupov

IS_EMPTY(R(B)) =

A B

1 null

2 null

1 null

R(A, B) =

R(B) =

IS_EMPTY(R(B) × S(Ø)) =
Azat Yakupov

RELATION{ < attributes commalist > }
// relation ~ relationtype

// relation variable ~ relvar
VAR < relvarname > BASE < relationtype >

< candidate key def list >
[< foreign key def list >];

// tuple of relvar
TUPLE{ < exp commalist > }

Azat Yakupov

R = RELATION{A : integer, B : integer, C : string};

A :
integer

B :
integer

C :
string

1 1 string #1

1 2 string #1

3 2 string #3

TUPLE{integer(1), integer(1), string(′ string #1′)};
TUPLE{integer(1), integer(2), string(′ string #1′)};
TUPLE{integer(3), integer(2), string(′ string #3′)};

VAR rel BASE R
{ A INTEGER,

B INTEGER,
C STRING }
PRIMARY KEY {A, B};

Azat Yakupov

rel′ : = rel

rel′ : = rel

WHERE C NOT (′ string #1′)

A B C
1 1 string #1
1 2 string #1
3 2 string #3

A B C
1 1 string #1

A B C
3 2 string #3

WHERE B = 1

rel′ : = rel

Azat Yakupov

INSERT rel RELATION { TUPLE {

B INTEGER (7),
C STRING (′ Hello′)}};

rel := rel UNION RELATION { TUPLE {

B INTEGER (7),
C STRING (′ Hello′)}};

A INTEGER (4),

A INTEGER (4),

Azat Yakupov

DELETE rel WHERE A = 1;

rel := rel WHERE NOT (A = 1);

Azat Yakupov

UPDATE rel WHERE A = 1

rel := WITH (rel WHERE A = 1) AS T1,

{B := 23 * A,
C :=′ string #4′ };

(EXTEND T1 ADD (23 * A AS NEW_B,
′ string #4′ AS NEW_C)) AS T2,

T2 { ALL BUT B, C} AS T3,
(T3 RENAME (NEW_B AS B, NEW_C AS C)) AS T4 :
(S MINUS T1) UNION T4;

Azat Yakupov

If tuple is presented in
relation variable it means

there is a real fact !

If tuple is not
presented in relation
variable it means

this “fact” is a fake!

Closed World Assumption for Relational Model

Azat Yakupov

Azat Yakupov

Real Life

Database ModelBusiness
Model

Integrity by entities (~ not null for primary key)

Foreign keys

User-defined integrities

Unique keys

Range values

List values and RegExp

Database Triggers / Database Rules

Type’s integrity

Azat Yakupov

Integrity Constraint - logical expression is returning TRUE or FALSE

Is Data
OK for
rule?

Integrity
Constraint

Passed

Integrity
Constraint
Violation

System can control consistency only
but not truth about data

C.J. Date

ROLLBACK

COMMIT

Azat Yakupov

Type’s Integrity

TYPE weight POSSREP {D DECIMAL (5,1)
CONSTRAINT D > 0.0

* POSSREP means POSSible REPresentation

AND D < 5000.0 };

*

Azat Yakupov

VAR rel BASE R
{ A INTEGER,

B INTEGER,
C STRING }

Attribute’s Integrity

1

2

3

Azat Yakupov

CONSTRAINT SC1

FORALL SX(SX . STATUS ≥ 1

Relation Variable’s Integrity

AND SX . STATUS ≤ 100)

Azat Yakupov

Relation Variable’s Integrity

Azat Yakupov

CONSTRAINT SC2

FORALL SX (IF SX . CITY =′ London′

THEN SX . STATUS = 20 END IF);

* where , are logical expressionsIF p THEN q p q

*

*

CONSTRAINT TRC2
FORALL PX

SUM (SPX1 WHERE SPX1 . P# = PX . P#, QTY) ≤

SUM (SPX WHERE SPX . P# = PX . P#, QTY)

Database Integrity

Azat Yakupov

CREATE TABLE Employee

(

 ID NUMBER,

 SALARY DECIMAL(9,2)

 CONSTRAINT CH_SAL

 CHECK (SALARY>=100000),

 DNAME VARCHAR(10)

 CONSTRAINT CH_DNAME

 CHECK (DNAME IN (‘HR’, ‘IT’)),

 BONUS DECIMAL(9,2) DEFAULT 0

);

Azat Yakupov

ALTER TABLE Employee ADD CONSTRAINT

CH_NN_SALARY CHECK (SALARY IS NOT NULL);

ALTER TABLE Employee ADD CONSTRAINT

CH_NN_BONUS CHECK (BONUS IS NOT NULL);

Azat Yakupov

CREATE TABLE Employee

(

 ID NUMBER NOT NULL,

 SALARY DECIMAL(9,2) NOT NULL

 CONSTRAINT CH_SAL

 CHECK (SALARY>=100000),

 DNAME VARCHAR(10)

 CONSTRAINT CH_DNAME

 CHECK (DNAME IN (‘HR’, ‘IT’)),

 BONUS DECIMAL(9,2) DEFAULT 0 NOT NULL

);

Azat Yakupov

Add possibility to register
employees from Finance
department

Bonus must be
less then salary

Azat Yakupov

2

1

ALTER TABLE Employee ADD
CONSTRAINT CH_BONUS CHECK

 (BONUS < SALARY) DISABLE;

1

Azat Yakupov

1

Azat Yakupov

ALTER TABLE Employee ENABLE

CONSTRAINT CH_BONUS;

SELECT *

 FROM Employee

WHERE BONUS >= SALARY;

ID SALARY DNAME BONUS

3 100 000 IT 500 000

102 123 000 HR 500 000

34 231 000 IT 500 000

• delete rows

• update BONUS values

• change constraint rule

ALTER TABLE Employee ADD
CONSTRAINT CH_BONUS CHECK

 (BONUS < SALARY);

1

Azat Yakupov

SELECT *

 FROM Employee

WHERE BONUS >= SALARY;

ALTER TABLE Employee ADD
CONSTRAINT CH_BONUS CHECK

 (BONUS < SALARY)

 NOT ENFORCED;

1

Azat Yakupov

1

Azat Yakupov

ALTER TABLE Employee ALTER
CHECK CH_BONUS ENFORCED;

SELECT *

 FROM Employee

WHERE BONUS >= SALARY;

ID SALARY DNAME BONUS

3 100 000 IT 500 000

102 123 000 HR 500 000

34 231 000 IT 500 000

• delete rows

• update BONUS values

• change constraint rule

ALTER TABLE Employee DROP
CONSTRAINT CH_DNAME;

ALTER TABLE Employee ADD
CONSTRAINT CH_DNAME CHECK
(DNAME IN (‘HR’, ‘IT’, ‘FINANCE’));

Azat Yakupov

2

Azat Yakupov

CREATE TABLE reservation (

 during tsrange,

 EXCLUDE USING GIST

 (during WITH &&)

);

CREATE TABLE reservation (

 figure circle,

 EXCLUDE USING GIST (figure WITH &&)

);

Key{ < attribute name commalist > }

A :
integer

B :
integer

C :
string

1 1 string #1

1 2 string #1

3 2 string #3

VAR rel BASE R
{ A INTEGER,

B INTEGER,
C STRING }
KEY {A, B};

Azat Yakupov

R(A1, A2, . . . , An)
K = {A1, A2, . . . , Am}, m ≤ n

 is potential key (candidate key)
if and only if
K

Uniqueness

Irreducibility

Azat Yakupov

A B C

1 1 2

1 2 3

3 2 4

K1 = {C}
K2 = {A, B}

K3 = {A, C}

K5 = {A, B, C}
K4 = {B, C}

candidates

not candidates

Azat Yakupov

 is simple potential key
(simple candidate key) if
K

 has only one attributeK = {Aj}

 has more then oneK = {A1, A2, . . . }

 is compound potential key
(compound candidate key) if
K

Azat Yakupov

candidatesK1

K2

K3

K4
K5

K6

K7

K2

Primary Key

K1 K3

K4 K5

K6

K7

Alternative Keys
Azat Yakupov

K2

Primary Key

K1

K3

K4
K5

K6

K7

Unique Keys

Azat YakupovAzat Yakupov

Which is a Primary Key

(from your point of view)

A B C

1 1 2

1 2 3

3 2 4

K1 = {C}
K2 = {A, B} candidates

Azat Yakupov

CREATE TABLE Employee

(

 ID NUMBER NOT NULL,

 SALARY DECIMAL(9,2) NOT NULL

 CONSTRAINT CH_SAL CHECK (SALARY>=100000),

 DNAME VARCHAR(10)

 CONSTRAINT CH_DNAME

 CHECK (DNAME IN (‘HR’, ‘IT’)),

 BONUS DECIMAL(9,2) DEFAULT 0 NOT NULL,

 INN VARCHAR(16),

 CONSTRAINT employee_pk PRIMARY KEY (ID),

 CONSTRAINT employee_uk UNIQUE (INN)

);

Azat Yakupov

ALTER TABLE Employee ADD CONSTRAINT
employee_pk PRIMARY KEY (ID);

ALTER TABLE Employee ADD CONSTRAINT
employee_uk UNIQUE (INN);

Azat Yakupov

R2 = {A1, A2, . . . , An}
then a Foreign Key FK = {A1, A2, . . . , Am}, m ≤ n
satisfies next rules

 with candidate key . Possible ∃ R1 CK R1 = R2

∃ FK′ ⊆ FK ⇒ FK′ = CK

∀ value1 ∈ FK ⊆ R2 ∃ value2 ∈ FK′ ⊆ FK ⇒

value2 = value3 ∈ CK ⊆ R1

Azat Yakupov

R1 ≠ R2

Azat Yakupov

R1 = R2

Azat Yakupov

Foreign Key is simple when
corresponding candidate key is
simple

Foreign Key is compound when
corresponding candidate key is
compound

Azat Yakupov

Other words a Foreign Key is based
on only one attribute

Other words a Foreign Key is based
on several attributes

Azat Yakupov

The link is a relationship between R1 → R2

link path

FOREIGN KEY{ < item commalist > }
REFERENCES < relvar name >

…Rn Rn−1 Rn−2 R1

Azat Yakupov

The link is a relationship between R1 → R2

link cycle

FOREIGN KEY{ < item commalist > }
REFERENCES < relvar name >

…Rn Rn−1 Rn−2 R1

Azat Yakupov

CASCADE option
VAR rel BASE R{ . . . } . . .

FOREIGN KEY{ . . . } REFERENCES S
ON DELETE |UPDATE CASCADE;

ID* Person
1 Ivan Ivanov

2→3 Petr Petrov

ID* Hobby PersonId
1 music 1
2 blog 1
3 football 2→3

UPDATE

DELETE

Azat Yakupov

SET NULL option
VAR rel BASE R{ . . . } . . .

FOREIGN KEY{ . . . } REFERENCES S
ON DELETE |UPDATE SET NULL;

ID* Person
1 Ivan Ivanov

2→3 Petr PetrovUPDATE

DELETE

Azat Yakupov

ID* Hobby PersonId
1 music null
2 blog null
3 football null

RESTRICT option
VAR rel BASE R{ . . . } . . .

FOREIGN KEY{ . . . } REFERENCES S
ON DELETE |UPDATE RESTRICT;

UPDATE

DELETE

Azat Yakupov

ID* Person
1 Ivan Ivanov
2 Petr Petrov

3→4 Anna Petrova

ID* Hobby PersonId
1 music 1
2 blog 1

DEFFERED CONSTRAINTNO ACTION option
VAR rel BASE R{ . . . } . . .

FOREIGN KEY{ . . . } REFERENCES S
ON DELETE |UPDATE NO ACTION;

UPDATE

DELETE

Azat Yakupov

ID* Person
1 Ivan Ivanov
2 Petr Petrov

3→4 Anna Petrova

ID* Hobby PersonId
1 music 1
2 blog 1

CREATE TABLE Employee

(

 ID NUMBER,

 INN VARCHAR2(16),

 CONSTRAINT employee_pk PRIMARY KEY (ID),

 CONSTRAINT employee_uk UNIQUE (INN)

);

CREATE TABLE Task

(

 ID NUMBER,

 EMPLOYEE_ID NUMBER,

 TASK_NAME VARCHAR2(100),

 CONSTRAINT employee_fk FOREIGN KEY (EMPLOYEE_ID)

 REFERENCES Employee (ID)

);

Azat Yakupov

CREATE TABLE Task

(

 ID NUMBER,

 EMPLOYEE_ID NUMBER,

 TASK_NAME VARCHAR2(100),

 CONSTRAINT employee_fk FOREIGN KEY (EMPLOYEE_ID)

 REFERENCES Employee (ID)

 ON DELETE CASCADE ON UPDATE RESTRICT

);

Azat Yakupov

ALTER TABLE Task ADD CONSTRAINT
employee_fk FOREIGN KEY (EMPLOYEE_ID)
REFERENCES Employee (ID)

ON DELETE CASCADE

ON UPDATE RESTRICT DISABLE;

ALTER TABLE Task ENABLE
CONSTRAINT employee_fk;

Azat Yakupov

?

ALTER TABLE Task ADD CONSTRAINT
employee_fk FOREIGN KEY (EMPLOYEE_ID)
REFERENCES Employee (ID)

ON DELETE CASCADE ON UPDATE RESTRICT;

?

Azat Yakupov

ALTER TABLE Task ADD CONSTRAINT
employee_fk FOREIGN KEY (EMPLOYEE_ID)
REFERENCES Employee (ID)

ON DELETE CASCADE ON UPDATE RESTRICT;

?

Azat Yakupov

SELECT EMPLOYEE_ID, ID

 FROM Task AS t

WHERE NOT EXISTS

 (SELECT 1

 FROM Employee AS e

 WHERE e.ID = t.EMPLOYEE_ID

 LIMIT 1);

?

Azat Yakupov

Start
Transaction

End
Transaction

constraint
CN#

NOT
DEFFERABLE

INITIALLY
IMMEDIATE

Change
Data

Change
Data

Is
CN1 OK?

EXCEPTION

Is
CN2 OK?

EXCEPTION

- -

+

Azat Yakupov

INITIALLY
DEFFERED

NOT
DEFFERABLE

INITIALLY
IMMEDIATE

constraint
CN#

Start
Transaction

End
Transaction

Is
CN# OK?

EXCEPTION

-

+ OKSET CONSTRAINTS

CN# DEFFERED;

SET CONSTRAINTS

CN# IMMEDIATE;

Change
Data

Change
Data

Azat Yakupov

DEFFERABLE

NOT
DEFFERABLE

INITIALLY
DEFERRED

INITIALLY
IMMEDIATE

State Status

default
default

constraint

Azat Yakupov

ALTER TABLE Task ADD CONSTRAINT
employee_fk FOREIGN KEY (EMPLOYEE_ID)
REFERENCES Employee (ID)

ON DELETE CASCADE ON UPDATE RESTRICT

DEFERRABLE INITIALLY DEFERRED;

Azat Yakupov

SET CONSTRAINT employee_fk DEFERRED;

UPDATE Employee SET ID = 100 WHERE ID = 1;

UPDATE Task SET EMPLOYEE_ID = 100

 WHERE EMPLOYEE_ID=1;

COMMIT;

SET CONSTRAINT employee_fk IMMEDIATE;

Tr
an

sa
ct

io
n

Azat Yakupov

A B C A B C A B C A B C

ENABLE

VALIDATE

~ ENABLE

ENABLE

NOVALIDATE

DISABLE

NOVALIDATE

~ DISABLE

DISABLE

VALIDATE

no DML

Azat Yakupov

ALTER TABLE Task ADD CONSTRAINT employee_fk

FOREIGN KEY (EMPLOYEE_ID) REFERENCES Employee (ID)

ON DELETE CASCADE ON UPDATE RESTRICT

ENABLE NOVALIDATE;

ALTER TABLE Employee ADD CONSTRAINT
employee_uk UNIQUE (INN) ENABLE NOVALIDATE;

ALTER TABLE Employee ENABLE VALIDATE
CONSTRAINT employee_uk;

Azat Yakupov

ALTER TABLE Task ADD CONSTRAINT employee_fk

FOREIGN KEY (EMPLOYEE_ID) REFERENCES Employee (ID)

ON DELETE CASCADE ON UPDATE RESTRICT

NOT VALID;

ALTER TABLE Employee VALIDATE CONSTRAINT
employee_fk;

Azat Yakupov

A B C

APPLICATION

Table
Trigger

Azat Yakupov

VAR < view_name > VIEW < relation_exp >

View is a virtual continuous relation defined by

• name (mandatory)

• relation’s expression (mandatory)

• list of candidate keys (optional)

< candidate_key_list >

Azat Yakupov

VAR rel BASE R
{ A INTEGER,

B INTEGER,
C STRING };

VAR view_rel VIEW

{A, B, C}

A B C
1 1 string #1
1 2 string #1

A :
integer

B :
integer

C :
string

1 1 string #1

1 2 string #1

3 2 string #3

(rel WHERE A = 1)

Azat Yakupov

view_rel WHERE B = 2

OR A + B > 0

A B C
1 2 string #1

A B C
1 1 string #1
1 2 string #1

view_rel WHERE B = 2

Azat Yakupov

VAR < mv_name > SNAPSHOT < relation_exp >

Materialized View is a discrete relation defined by

• name (mandatory)

• relation’s expression (mandatory)

• list of candidate keys (optional)

• refresh time period (mandatory)

< candidate_key_list >
REFRESH EVERY < period >

Azat Yakupov

92Yakupov Azat DataLab

A :
integer

B :
integer

C :
string

1 1 string #1

1 2 string #1

3 2 string #3

VAR rel BASE R
{ A INTEGER,

B INTEGER,
C STRING };

VAR mv_rel SNAPSHOT

{A, B, C}
(rel WHERE A = 1)

A B C
1 1 string #1
1 2 string #1

mv_rel WHERE B = 2

OR A + B > 0

A B C
1 2 string #1

A B C
1 1 string #1
1 2 string #1

mv_rel WHERE B = 2

Azat Yakupov

time #1 time #4time #3time #2

Data
State Table(s) data

Azat Yakupov

VIEW
Data

VIEW
Data

VIEW
Data

time #1 time #4time #3time #2

Table(s) data
Data
State

MVIEW
Data

MVIEW
Data

MVIEW
Data

Azat Yakupov

ANSI/SPARK Architecture

Internal
Level

External Level

~ physical level
describes data in
database files

~ logical level
describes data in

database tables

~ user level
describes data in
database [m]views

Conceptual
Level

Azat Yakupov

Conceptual Level

External Level

Table #1

Table #2

Table #3

Table #4

Table #5

View #2 View #3 MView #1View #1

Table #6

Table #7

Azat Yakupov

CREATE OR REPLACE FORCE VIEW V$Task1 AS

SELECT ID, EMPLOYEE_ID, TASK_NAME

 FROM Task

WHERE EMPLOYEE_ID = 100

WITH CHECK OPTION;

CREATE OR REPLACE FORCE VIEW V$Task2 AS

SELECT ID, EMPLOYEE_ID, TASK_NAME

 FROM Task

WHERE EMPLOYEE_ID = 100

WITH READ ONLY;

Azat Yakupov

CREATE OR REPLACE VIEW V$Task AS

SELECT ID, EMPLOYEE_ID, TASK_NAME

 FROM Task

WHERE EMPLOYEE_ID = 100

WITH LOCAL [CASCADED] CHECK OPTION;

Azat Yakupov

Azat Yakupov

CREATE OR REPLACE VIEW V$Task AS

SELECT ID, EMPLOYEE_ID, TASK_NAME

 FROM Task

WHERE EMPLOYEE_ID = 100

WITH LOCAL [CASCADED] CHECK OPTION;

CREATE MATERIALIZED VIEW MV$Task

BUILD DEFERRED [IMMEDIATE]

REFRESH FORCE [FAST | COMPLETE]

ON COMMIT [ON DEMAND] AS

SELECT EMPLOYEE_ID, TASK_NAME

 FROM Task;

EXEC DBMS_MVIEW.refresh(‘MV$Task’);

Azat Yakupov

CREATE MATERIALIZED VIEW MV$Task AS

SELECT EMPLOYEE_ID, TASK_NAME

 FROM Task WITH [NO] DATA;

REFRESH MATERIALIZED VIEW MV$Task;

Azat Yakupov

not implemented yet

Azat Yakupov

A B C

APPLICATION

Instead of
Trigger

Azat Yakupov

A B C

View

Table

COMMIT;

Azat Yakupov

