

Relational Databases

Lecturer: Азат Якупов (Azat Yakupov)

https://datalaboratory.one

The main application of **relational algebra** is to provide a theoretical foundation for RDBMS, particularly query languages for such databases, chief among which is SQL.

Edgar Frank Codd proposed such an algebra as a basis for database query languages at 1970.

1st Query Language was *ALPHA* (developed by Dr. Codd, but never implemented)

Then QUEL for Ingres then POSTQUEL and finally SQL

retrieve (s.all)
where s.state = "FL"

QUEL

SQL

SELECT*
FROM student
WHERE state = 'FL'

range of s is student append to s

(name = "Ivan", age = 17, sex = "m", state = "FL")

SQL

INSERT INTO student (name, age, sex, state) VALUES ('Ivan', 17, 'm', 'FL')

delete s where s.name="Ivan"

QUEL

SQL

DELETE FROM student
WHERE name='Ivan'

replace s (age=s.age+1)

QUEL

SQL

UPDATE student
SET age=age+1

range of e is EMPLOYEE retrieve into W

(COMP = e.Salary / (e.Age - 18))

where e.Name = "Jones"

SQL

CREATE TABLE W AS

SELECT (e.salary / (e.age - 18)) AS comp

FROM employee AS e

WHERE e.name = 'Jones'

- Selection (Restriction)
- Projection
- Cartesian Product ~ cross join
- Union
- Difference
- Rename

Developer (dID, dName, dCntProjects, dAvgPoint)
Project (pName, pManagerName, pPriority)
Apply (dID, pName, pPercentUsage)

Selection (restriction)

$$\sigma_{A\theta B}(R)$$

A, B are attribute names

 θ is a binary operation in the set

$$<, \le , = , \ne , > , \ge$$

R is a relation

Generalized Selection

$$\sigma_{\varphi}(R)$$

$$\operatorname{AND} \quad \sigma_{\varphi \wedge \psi} \Big(R \Big) = \sigma_{\varphi} \Big(R \Big) \cap \sigma_{\psi} \Big(R \Big)$$

OR
$$\sigma_{\varphi \lor \psi}(R) = \sigma_{\varphi}(R) \cup \sigma_{\psi}(R)$$

NOT
$$\sigma_{\neg \varphi}(R) = R - \sigma_{\varphi}(R)$$

 $\sigma_{dAvgPoint \geqslant 4.0 \land dCntProjects=3}$ (Developer) $\sigma_{dAvgPoint \ge 4.0(AND)dCntProjects=3}$ (Developer)

Developer

dID	dName	dCntProjects	dAvgPoint
1	Ivan	3	5
2	Peter	2	3,5
3	Ivan	5	5

$\sigma_{dAvgPoint \geqslant 4.0 \ AND \ dCntProjects=3}$ (Developer)

dID	dName	dCntProjec	dAvgPoint
1	Ivan	3	5

pName	pManagerNam	pPriority
Project #1	Ivan Ivanov	high
Project #2	Petr Petrov	middle
Project #3	Sergey Ivanov	low

 $\sigma_{pManagerName="Ivan Ivanov" OR pManagerName="Petr Petrov"}(Project)$

pName	pManagerNam	pPriority
Project #1	Ivan Ivanov	high
Project #2	Petr Petrov	middle

$$\sigma_{A}(R) = \sigma_{A}\sigma_{A}(R)$$

SELECT *
FROM R
WHERE A = 1

SELECT * FROM R WHERE A = 1 AND

$$\sigma_A \sigma_B(R) = \sigma_B \sigma_A(R)$$

SELECT*
FROM R
WHERE A = 1
AND
B = 1

$$\sigma_{A \wedge B}(R) = \sigma_{A}(\sigma_{B}(R))$$

SELECT*
FROM R
WHERE A = 1
AND
B = 1

SELECT * FROM (SELECT* FROM R WHERE A = 1 WHERE B = 1

$$\sigma_{A \wedge B}(R) = \sigma_B(\sigma_A(R))$$

```
SELECT *
FROM R
WHERE A = 1
AND
B = 1
```

```
SELECT *
FROM (
  SELECT*
   FROM R
  WHERE B = 1
WHERE A = 1
```

Projection

$$\pi_{A_1,\ldots,A_n}(R)$$

 A_1, \ldots, A_n are attribute names

R is a relation

π_{dName} (Developer)

Developer

dID	dName	dCntProjects	dAvgPoint
1	Ivan	3	5
2	Peter	2	3,5
3	Ivan	5	5

 π_{dName} (Developer)

dName

Ivan

Peter

Developer

dID	dName	dCntProjects	dAvgPoint		
1	Ivan	3	5		
2	Peter	2	3,5		
3	Ivan	5	5		

$\pi_{dName, 2*dCntProjects}(Developer)$

dName	2*dCntProjects
Ivan	6
Peter	4
Ivan	10001

$$\pi_{a_1,\dots,a_n}(\sigma_A(R)) = \sigma_A(\pi_{a_1,\dots,a_n}(R))$$

$$A \subseteq \{a_1,\dots,a_n\}$$

SELECT A, B, C
FROM R
WHERE A = 1
AND
B = 1

SELECT * FROM (SELECT A, B, C FROM R) WHERE A = 1 AND B = 1

$$\pi_{a_1,...,a_n}(\pi_{b_1,...,b_m}(R)) = \pi_{a_1,...,a_n}(R)$$

$$\{a_1,\ldots,a_n\} \subseteq \{b_1,\ldots,b_n\}$$

SELECT A, B, C FROM R

SELECT A, B
FROM (
SELECT A, B, C
FROM R)

							A	В	W	Y	Z	
]					1	1	1	1	1	_
A	В		W	Υ	Z		1	1	3	2	1	
1	1	X	1	1	1	=	1	2	1	1	1	
1	2		3	2	1		1	2	3	2	1	
3	2			i	:		3	2	1	1	1	
1	R			C			3	2	3	2	1	
			S					Z				

π_* (Developer × Project × Apply)

π_* (Developer × Project × Apply)

naming anomaly

SELECT dID, pName FROM Developer

CROSS JOIN Project CROSS JOIN Apply

Rename

$$\rho_{A|B}(R)$$

$$\rho_{A\to B}(R)$$

A, B are attribute names

R is a relation

 $A \rightarrow B$ or $(A \mid B)$ is renaming

Developer

dID	dName	dCntProjects	dAvgPoint		
1	Ivan	3	5		
2	Peter	2	3,5		
3	Ivan	5	5		

P_{dID}, dCntProjects | dCnt, dAvgPoint |dAvg (Developer))

dID	dCnt	dAvg
1	3	5
2	2	3,5
3	5	5

$\pi_* (Developer \times Project \times \rho_{dID|aID, pName|aName}(Apply))$

SELECT A AS A_1, B AS B_2, CASC NEW FROM R AS R_NEW

Union

$$\pi_{r_1,...,r_n}(R) \cup \pi_{s_1,...,s_n}(S)$$

 r_i , s_i are attribute names

R, S are relations

$\pi_{dName}(Developer) \cup \pi_{pName}(Project)$

$\pi_{dName}(Developer) \cup \rho_{pName|dName}(Project)$

SELECT A, FROM R UNION SELECT A, C AS B FROM S

Difference

$$\pi_{r_1,...,r_n}(R) \setminus \pi_{s_1,...,s_n}(S)$$

 r_i , s_i are attribute names

R, S are relations

π_{dID} (Developer) \ π_{dID} (Project)

π_{dID} (Developer) \ π_{dID} (Project)

SELECT A, FROM R MINUS SELECT A, C AS B FROM S

SELECT A, FROM R EXCEPT SELECT A, C AS B FROM S

Intersection

$$\pi_{r_1,...,r_n}(R) \cap \pi_{s_1,...,s_n}(S)$$

 r_i , s_i are attribute names

R, S are relations

π_{dID} (Developer) $\cap \pi_{dID}$ (Project)

$\pi_{dID} (Developer) \cap \pi_{dID} (Project)$

SELECT A, FROM R INTERSECT SELECT A, C AS B FROM S

- Natural Join
- θ Join
- Semijoin
- Antijoin (~ semidifference)
- Division
- Left/Right/Full Outer Joins

Natural Join

 $R \bowtie S$

R, S are relations

The result is a set of combinations of tuples between R and S using equal common attribute names

π_* (Developer \bowtie Project \bowtie Apply)

dID	dName	dCntProjects	dAvgPoint
1	Ivan	3	5
2	Peter	2	3,5

pName	pManagerName	pPriority	
Project #1	Ivan Ivanov	high	

dID	pName	aPercentUsage
2	Project #1	100 %

dID	dName	dCntProjects	dAvgPoint	pName	pManager Name	pPriority	aPercent Usage
2	Peter	2	3,5	Project #1	Ivan Ivanov	high	100 %

$$R \bowtie S = \sigma_{\theta}(R \times S)$$

 π_* (Developer \bowtie Project \bowtie Apply)

 $\pi_* (\sigma_{dID=aID \land pName=aName}(Developer \times$

 $Project \times \rho_{dID|aID, pName|aName}(Apply)))$

no attributes with similar names

							A	В	W	Y	Z	
_	_						1	1	1	1	1	
A	В		W	Υ	Z		1	1	3	2	1	
1	1	M	1	1	1	=	1	2	1	1	1	
1	2		3	2	1		1	2	3	2	1	
3	2			i	:		3	2	1	1	1	
1	P			5			3	2	3	2	1	
				S					Z			

SELECT R.A, S.B FROM RNATURAL JOIN'S

$$R \bowtie S = \sigma_{\theta}(R \times S)$$

SELECT R.A,
S.B

FROM RCROSS JOIN S

WHERE R.A = S.A AND

R.B = S.B

heta-join

$$R\bowtie_{A\theta B}S$$

R, S are relations

 θ is a binary operation in the set

$$<, \le , = , \ne , > , \ge$$

A, B - attribute names

$$R\bowtie_{\theta} S = \sigma_{\theta}(R \times S)$$

$\pi_* (Project \bowtie_{pPriority='high'} (Apply))$

pName	pManagerName	pPriority	
Project #1	Ivan Ivanov	high	PPriority='high'

dID	pName	aPercentUsage	
2	Project #1	100 %	

dID	pName	pManagerName	pPriority	aPercentUsage
2	Project #1	Ivan Ivanov	high	100 %

SELECT R.A,

SB

FROM R NATURAL JOIN S

WHERE R.C = 123

Semijoin

$$R \times S$$
 $R \times S$

R, S are relations

$$R \bowtie S = \pi_{a_1,...,a_n}(R \bowtie S), \{a_1,...,a_n\} \in R$$

$$R \bowtie S = \pi_{a_1,...,a_n}(R \bowtie S), \{a_1,...,a_n\} \in S$$

π_* (Developer \bowtie Apply)

dID	dName	dCntProjects	dAvgPoint
1	Ivan	3	5
2	Peter	2	3,5

dID	pName	aPercentUsage
2	Project #1	100 %

π_* (Developer \bowtie Apply)

dID	dName	dCntProjects	dAvgPoint
1	Ivan	3	5
2	Peter	2	3,5

dID	pName	aPercentUsage
2	Project #1	100 %

SELECT * FROM R WHERE EXISTS (SELECT A FROM S WHERE S.A = R.A)

SELECT * FROM'S WHERE EXISTS (SELECT A FROM R WHERE S.A = R.A)

Antijoin (~ semidifference)

R, S are relations

$$R \triangleright S = R \setminus (R \triangleright S)$$

π_* (Developer \triangleright Apply)

dID	dName	dCntProjects	dAvgPoint
1	Ivan	3	5
2	Peter	2	3,5

dID	pName	aPercentUsage
2	Project #1	100 %

SELECT * FROM R WHERE NOT EXISTS (SELECT A FROM S WHERE S.A = R.A)

Left / Right joins

 $R \bowtie S$ $R \bowtie S$

$\pi_* (Developer \bowtie Apply)$

dID	dName	dCntProjects	dAvgPoint
1	Ivan	3	5
2	Peter	2	3,5

dID	pName	aPercentUsage	
2	Project #1	100 %	

dID	dName	dCntProjects	dAvgPoint	pName	aPercentUsage
1	Ivan	3	5	ω	
2	Peter	2	3,5	Project #1	100 %

$\pi_* (Developer \bowtie Apply)$

dID	dName	dCntProjects	dAvgPoint
1	Ivan	3	5
2	Peter	2	3,5

dID	pName	aPercentUsage
2	Project #1	100 %
3	Project #3	75 %

	dID	dName	dCntProjects	dAvgPoint	pName	aPercentUsage
 	3	ω	ω	ω	Project #3	75 %
ľ	2	Peter	2	3,5	Project #1	100 %

SELECT * FROM S LEFT JOIN R ON S.A = R. B

Full join

$$R \supset S$$

R, S are relations

$$R \bowtie S = (R \bowtie S) \cup (R \bowtie S)$$

π_* (Developer \bowtie Apply)

dID	dName	dCntProjects	dAvgPoint
1	Ivan	3	5
2	Peter	2	3,5

dID	pName	aPercentUsage
2	Project #1	100 %
3	Project #3	75 %

dID	dName	dCntProjects	dAvgPoint	pName	aPercentUsage
1	Ivan	3	5	ω	
2	Peter	2	3,5	Project #1	100 %
3	ω	ω	ω	Project #3	75 %

Division

$$R \div S$$

$\pi_* (R \div S)$

Α	В	С
1	1	2
2	3	4
3	1	2
4	5	6
1	5	6
4	1	2
1	3	4

- duplicate-elimination
- aggregation operators
- grouping operator
- extended projection
- sorting operator

Duplicate Elimination

$$\delta(R)^*$$

	Α	В
	1	1
	1	2
=	3	2
	1	1
	1	1
	3	2

	A	В
C(D)	1	1
$\delta(R)$	1	2
	3	2

^{*} for real physical database systems

Aggregation Operators

	A	В
D _	1	1
R =	1	2
	3	2

SUM(B) =
$$1+2+2 = 5$$

AVG(A) = $(1+1+3)/3$
MIN(A) = 1
MAX(B) = 2
COUNT(A) = 3

Grouping Operator

$$\gamma_L(R)$$

	Α	В
	1	1
D —	1	2
$R = \frac{1}{2}$	3	2
	3	4
	2	1

$\rho_{A, count(B) \mid cnt, min(B) \mid min(\gamma_{A, count(B), min(B)}(R))}$

	į				
	Α	В			
	1	1	A	cnt	min
\mathbf{D}	1	2	1	2	1
	3	2	3	2	2
	3	4	2	1	1
	2	1			

Extended Projection

$$x \rightarrow y$$

x, y are attributes

	Α	В
	1	1
	1	2
R =	3	2
	1	1
	1	1
	3	2

Sorting Operator

$$au_L(R)^*$$

	A	В
	1	1
	1	2
R =	3	2
	1	1
	1	1
	3	2

$ au_{A}$	$_{B}(R)$	=

A	В↓
1	
1	1
1	1
1	2
3	2
3	2
0 0 0 0 1 1	1 0 1 0 0 0 0 1 1 0

^{*} for real physical database systems

Datalog (database logic)

Relational Algebra

Relation R

Relation with attributes R(A, B, C)

Datalog

Predicate R

Atom with attributes R(A, B, C)

Atom R(A, B, C, D) = TRUEif $(A, B, C, D) \in R$

$$R = 1 2$$

$$R(1,2) = TRUE$$

$$R(3,4) = TRUE$$

$$R(3,5) = FALSE$$

$R = \pi_{dID,dName}(\sigma_{dAvgPoint \ge 4.0} (Developer))$

 $R(di, dn) \leftarrow Developer(di, dn, dc, da) AND da \ge 4$

head

body

datalog rule

Datalog query

 $\pi_{dID,dName}(\sigma_{dAvgPoint \geqslant 4.0} (Developer) \cap \sigma_{dCntProjects=3} (Developer))$

- 1. $W(di, dn, dc, da) \leftarrow Developer(di, dn, dc, da) \land AND da \ge 4.0$
- 2. $X(di, dn, dc, da) \leftarrow Developer(di, dn, dc, da) AND dc = 3$
- 3. $Y(di, dn, dc, da) \leftarrow W(di, dn, dc, da) AND X(di, dn, dc, da)$
- 4. $Answer(di, dn) \leftarrow Y(di, dn, dc, da)$

Relational Algebra	Datalog
grouping operator	ω
aggregation operators	ω
duplicate elimination	
ω	recursion rule

 $Path(X, Y) \leftarrow Edge(X, Y)$

 $Path(X, Y) \leftarrow Edge(X, Z) \ AND \ Path(Z, Y)$

Why do we need "Relational Algebra"

title: ID: 35821 - Key: federate-query

COMMIT;

